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THE DYNAMICS OF A LANDSLIDE

MARSHALL J. LEITMAN a AND PIERO VILLAGGIO b∗

ABSTRACT. The onset of slip of a landslide may be mathematically modeled as the sud-
den detachment of a block of softer material initially bonded to the side of a mountain. Its
subsequent motion is slowed by friction and by energy dissipation in the block due to its
change of shape, which commences when the block reaches the bottom of the mountain.
Since the bottom is a horizontal plane, the block will continue to slide along it until its ki-
netic energy is exhausted or it collides with an obstacle. A numerical example shows that
the front of even a relatively small landslide can travel far from the base of the mountain.

To Giuseppe Grioli in recognition
of his mechanical taste and musical vocation

1. Introduction

For millennia humans have observed the onset of landslides: the sudden detachment of
a layer of earth or mud situated on an incline and its subsequent downward slide until it is
stopped by an obstacle in its path or by natural damping. Often the sliding earthy mass is
slow and its volume small. Its flow, though steady, can be blocked effectively by artificial
embankments, such as those that flank the roads in alpine regions. But the sudden fall of
a huge mass of earth at high velocity can be catastrophic, resulting in the obliteration of a
town or the damming of a river valley. Natural causes of landslides include the weakened
resistance of the earthy mass by variation in cohesiveness, trains of seismic waves, and
massive deforestation of the mountainside.

There is a huge literature on this subject, beginning with the classical memoir by
Coulomb [1] (masterfully commented upon by Heyman [3]) and extended in the 19th Cen-
tury by Rankine [5] and Culmann [2]. They, however, were concerned with establishing
the critical equilibrium of an earth-mass before its detachment but not its subsequent de-
scent and progressive disgregation. Studies of the dynamics of landslides are more recent.
A suggestive account of the onset, development and arrest of some impressive landslides
in the first half of the 20th Century was written by Terzaghi [7] but it is merely descriptive.

We here propose a simple, one-dimensional model of the creation and evolution of a
landslide regarded as a block bonded to a layer on an inclined plane. When the bond is
broken the block starts to slip down the incline until it reaches the horizontal bottom and
continues to slide along the horizontal base. If the constitutive properties of the material
and the coefficients of cohesion and friction are known, it is possible to describe the com-
plete motion of the block from its initial detachment to its final configuration at standstill.
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Figure 1. The sudden detachment of the landslide along BC. The front is at x0.

2. The Model and the Critical State

One of the most common geological situations giving rise to a landslide occurs when
the flank of a mountain, regarded as a rigid inclined plane, is partially covered by a semi-
infinite layer of soft material, the front of which, AD, is initially located at a horizontal
distance x0 from the origin, O (Fig. 1). To define the geometry of the problem we introduce
a Cartesian (x, y)−coordinate system as shown in Fig. 1. The half-line (x > 0, y =
x tanα) emanating from the origin with angle α (0 < α < π/2), from the positive x−axis,
is the flank of the mountain and a plane of slip; the half-strip of height H and unit thickness
starting at AD is the region of potential detachment; and the half-line (x < 0, y = 0)
emanating from the origin along the negative x−axis is the base of the mountain and also
a plane of slip.

We first assume that the layer of material on the flank of the mountain is unbroken and
consider the equilibrium of the sub-region ABCD of horizontal length L according to slab
theory (see Thomsen et al [8]). Refer now to the free-body diagram in Fig 2. The (vertical)
weight of the block ABCD is W = γHL, where γ denotes the specific weight of the
material. The downward vertical force W can be resolved into a tangential component,
W sinα, and a normal component, W cosα. The latter induces a frictional tangential
force fW cosα, where f is the coefficient of friction. Hence, tangential equilibrium of
the block is achieved provided that a traction

N = W (sinα− f cosα) = γHL(sinα− f cosα) (1)

is transmitted across the section BC. We assume that the coefficient of friction and the
slope of the incline are such that N ≥ 0; thus,

f ≤ tanα. (2)

Denote the horizontal and vertical components of N by Sx = N cosα and Sy =
N sinα. According to slab theory, the component Sy induces a uniform tangential stress
in the slab of magnitude

τxy =
Sy

H
. (3)

For sufficiently small values of τxy the layer remains in equilibrium on the incline. But,
as soon as τxy reaches a critical value c, the cohesion, on some vertical section, a sudden
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Figure 2. Free body diagram

detachment will occur there. If BC (Fig. 1) is such a section, the entire block, the parallel-
ogram ABCD, is no longer attached to the rest of the layer and will begin to slide down
the slope. This is the onset of the landslide.

From, Eq. (3) the condition of first detachment is

τxy =
Sy

H
=

N sinα

H
= c, (4)

called the special critical state by Sokolovsi [6]. From Eq. (1), the length, L, of the de-
taching block can be determined in terms of the other physical quantities: α, f, γ, and c.

3. The Descent of the Block

After the sudden detachment of the block at the section BC the motion of the block
ABCD will be that of a rigid body sliding down an inclined plane. Locate the block by
its front, its forward face AD, at a horizontal distance x from the origin. At the instant of
detachment, t0 = 0, the location is x0. From this instant, until the block reaches the base
of the mountain at x = 0, the motion is governed by the dynamical equation

Mẍ = −N cosα, (5)

where M is the mass of the block and the initial conditions are

x(0) = x0, ẋ(0) = v0 = 0. (6)

Since the mass of the block is M = γ
gHL, where g is the acceleration of gravity, Eq. (5)

becomes
ẍ = −g(sinα− f cosα) cosα, (7)

Quadrature of Eq. (7), using the initial data in Eq. (6), is immediate:

x(t) = x0 − [g(sinα− f cosα) cosα]
t2

2
. (8)
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Figure 3. The landslide in progress on the mountainside

From Eq. (8), the time, t1, at which the forward vertex A reaches the origin, O, and the
corresponding velocity, v1 = ẋ(t1) are

t1 =


2x0

g(sinα− f cosα) cosα
(9)

and

v1 = ẋ(t1) = −

2x0g(sinα− f cosα) cosα). (10)

The assumption in Eq. (2) guarantees that these expressions are well-defined.

4. The Transition to the Plane

At time t1, when the block makes first contact with the base (Fig. 4), the block begins
a progressive permanent strain of pure shear as shown in Fig. 5. This process, due to de-
cohesion, will stop at time t2 when the rear vertex B reaches the origin, O (Fig. 6). The
block ABCD, initially a parallelogram, has been permanently deformed into the rectan-
gular block ABCD given by −L ≤ x ≤ 0, 0 ≤ y ≤ H . We assume that the velocity
v1 = ẋ(t1) is so high that the rear vertex B reaches the origin.

Decohesion and the resulting permanent strain is necessarily accompanied by energy
dissipation. In our case we can compute the energy, Dc(x), dissipated in terms of the
location, x, of the forward vertex A by the formula (consistent with slab theory):

Dc(x) = −cαHL
 x

L


, −L ≤ x ≤ 0, (11)

where the angle α is measures the strain.
In addition to the energy dissipated by decohesion, there are frictional losses. Omitting

the details, this energy loss, Df (x), is

Df (x) = fγHL2
 x

L

2

, −L ≤ x ≤ 0. (12)

Energy is also gained during the transition: potential energy is is converted to kinetic en-
ergy as the massive block descends. The gain in kinetic energy, Gke(x), is found by com-
puting the change in height of the center of mass of the block in terms of x and multiplying
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Figure 4. The onset of the transition
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Figure 5. The Transition in progress

by the weight of the block. Thus,

Gke(x) = −γ

2
HL2

 x

L


2 +

 x

L


tanα, −L ≤ x ≤ 0. (13)

We assume that the total change in kinetic energy during transition is entirely associated
with these losses and gains. If v(x) is the velocity when the vertex A is at x, then

1

2
Mv21 −

1

2
Mv2(x) = Dc(x) +Df (x)−Gke(x), −L ≤ x ≤ 0, (14)

Where M = γ
gLH is the mass of the block. Thus,

v(x) = −


v21 + 2cα
g

γ

x

L
− g

L


(2L tanα)x+ (2f + tanα)x2


, −L ≤ x ≤ 0. (15)

Our assumption that v1 was large enough to complete the transition is equivalent to as-
suming that the radicand in Eq. (15) is always non-negative. Let t2 be the time when the
transition is complete, that is, when the forward vertex A is at x = −L. Write v2 = v(−L)
for the velocity at that time. Then, from Eq. (15),

v2 = −

v21 − 2cα

g

γ
− gL(2f − tanα). (16)
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Figure 6. The end of transtition

The formula in Eq. (15) prompts two observations. First, the volume of the block, HL,
does not appear. This is not surprising, since the energy dissipation and gain terms are all
proportional to the volume. Second, it can be used to compute the duration of the transition,
the time it takes for the vertex A to go from 0 to x. If t̂(x) is the time when A is at x,

t̂(x)− t1 =

 x

0

dξ

v(ξ)
, −L ≤ x ≤ 0. (17)

Observe that the third term in the radicand of the expression in Eq. (16) depends only on
the frictional energy losses and the gain in kinetic energy. If it is small in comparison with
the first two terms and neglected, the magnitude of the velocity v2 will be little changed.
The same argument applies to the velocity function v(x) of Eq. (15). The third term under
the radicand also represents the contribution of frictional energy losses and the gain in
kinetic energy. If its contribution is small in comparison with the first two terms, it can
be neglected. (We will see that this is indeed the case for the typical example discussed in
Section 6.) Henceforth, we replace the function v(x) of Eq. (15) by the approximation

v̂(x) = −

v21 + 2cα

g

γ

x

L
, −L ≤ x ≤ 0, (18)

thereby neglecting the combined effects of frictional energy losses and the gain in kinetic
energy while retaining the effects of decohesion. To be consistent, we also replace the
value of v2 in Eq. (16) by

v̂2 = −

v21 − 2cα

g

γ
. (19)

Now if we use v̂(x) in place of v(x) in the integral for the elapsed time of Eq. (17) we
get the compellingly simple result:

t̂(x)− t1 =
γL

cαg
(v̂(x)− v1), −L ≤ x ≤ 0. (20)

Hence, retaining only the effect of decohesion, the duration of the complete transition is

t̂2 − t1 =
γL

cαg
(v̂2 − v1) (21)

and the change in speed during the transition is approximately linear in the time lapse.
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Figure 7. The landslide in progress after the transition

5. The Plane Shift of the Block

Once the transition is completed the block ABCD, now rectangular, lies on the interval
−L ≤ x ≤ 0. The subsequent motion of the vertex A for t ≥ t2 is described by the
equation

ẍ = gf, t > t2, (22)

with the initial conditions

x(t2) = −L and ẋ(t2) = v2. (23)

After a first quadrature we get

v(t) = ẋ(t) = v2 + gf(t− t2), t ≥ t2. (24)

And after a second we have

x(t) =
1

2
gf(t− t2)

2 + v2(t− t2)− L, t ≥ t2. (25)

The block comes to rest at time t3 when v(t3) = 0, namely when

t3 − t2 = − v2
gf

. (26)

Its rest position, x(t3), is now completely determined:

x(t3) = −

L+

v22
2gf


. (27)

6. A Numerical Example

In order to get some insight into the magnitudes of the physical quantities involved in a
landslide, we will assume the following values for the angle of inclination α, the distance
x0, and the thickness of the layer H:

α =
π

4
radians, x0 = 100m, and H = 10m. (28)
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Note that the length L cannot be prescribed but must be computed. For the constitutive
properties of the material we take the cohesion c, the friction factor f and the specific
weight γ to be (Jenne [4]):

c = 5× 103
kg

m2
, f = tan

π

6
≈ 0.58 and γ = 2× 103

kg

m3
. (29)

Replacing N from Eq. (1) into Eq. (4) yields

γL(sinα− f cosα) sinα = c, (30)

whence, after using the values from Eqs. (28) and (29), L = 11.83m. This landslide
has the volume HL = 118.30m3 and weighs γHL = 2.37 × 105 kg, a relatively small
landslide.

From Eqs. (9) and (10) we recover the values

t1 = 8.26 sec and v1 = −24.20
m

sec
. (31)

Next, from Eqs. (18), (21), and (31), Eqs. (19) and (21) yield the values

v̂2 = −23.39
m

sec
and t̂2 − t1 = 0.50 sec. (32)

Finally, from Eqs. (26) and (27), we have from Eqs. (31) and (32)

t3 − t̂2 = 4.13 sec and x(t3) = −60.19m. (33)

The last numerical value, x(t3), is the point on the negative x−axis at which the front of
the landslide comes to rest.

These numerical values were obtained assuming that the transition depends only on
decohesion. Had we included all the energy terms to compute transition values, the velocity
v2 from Eq. (16) would be v2 = −23.01 m

sec and, from Eq. (17), the time lapse would be
t2 − t1 = 0.48 sec. The transition period is very short in comparison with the slide down
the mountain and the slide along the base and the velocity change during transition is small.
A posteriori, at least in this case, the entire transition process can be ignored.

7. Concluding Comments

From the numerical values in Section 6, our very simple model predicts that a relatively
small landslide can travel far from the base of the mountain in a short time. The simplifying
assumption that the decohesion is dominant during the transition phase of the landslide’s
progress leads to a good estimate for the given data. Our numerical example leads us to
conclude that, for the given data, the entire transition can be ignored. Of course, this might
not obtain if other data are used. Villages located far from the base of the mountain may
not be safe from the devastating effects of a landslide.
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